

Internet of Things, Ad Hoc and Sensor
Networks Technical Committee Newsletter

(IoT-AHSN TCN)

Volume 1, No. 15

December 2021

CONTENTS

PREFACE …………………………………………………………………………………………..1

TC OFFICERS AND NEWSLETTER EDITORS …………………………………………2

NEWS ARTICLES ………………………………………………………………………..……..3

PREFACE

The IEEE ComSoc Ad Hoc and Sensor Networks Technical Committee (IoT-AHSN TC)
sponsors papers, discussions, and standards on all aspects of IoT, ad hoc and sensor
networks. It provides a forum for members to exchange ideas, techniques, and
applications, and share experience among researchers. Its areas of interest include systems
and algorithmic aspects of sensor and ad hoc networks, networking protocols and
architecture, embedded systems, middle-ware and information management, novel
applications, flow control and admission control algorithms, network security, reliability,
and management. In an attempt to make all the TC members as well as the IoT-AHSN
worldwide community aware of what is going on within our main areas of concerns, this
newsletter had been set up. The newsletter aims at inviting the authors of successful
research projects and experts from all around the world with large vision about IoT-AHSN-
related research activities to share their experience and knowledge by contributing in short
news.

The fifteenth issue of the IoT-AHSN TC Newsletter focuses on the theme “Cloud/Edge
Computing for Internet of Things”. Specifically, this issue includes 2 news articles: i)
Correlation Aware Scheduling for Mobile Edge Computing in Industrial Internet of Things;
ii) Deep Reinforcement Learning Assisted Energy Efficient Computation Offloading with
DVFS for Time-Critical IoT Applications in Edge Computing. We thank the contributors for
their efforts to help make the IoT-AHSN TC Newsletter a success. We hope that the
methods/approaches presented in this issue could significantly benefit researchers and
application developers who are interested in IoT and ad hoc/sensor networks.

Newsletter Co-Editors
Qiang Ye (Dalhousie University, Canada)

Moez Esseghir (University of Technology of Troyes, France)
Lu Lv (Xidian University, China)

IOT-AHSN TC Newsletter, Vol. 1, No. 15, December 2021 1

TC OFFICERS AND NEWSLETTER EDITORS

TC Officers

Name Affiliation Email

Jiajia Liu
(Chair) Xidian University, China liujiajia@xidian.edu.cn

Sharief Oteafy
(Vice Chair) DePaul University, USA soteafy@depaul.edu

Shuai Han
(Secretary)

Harbin Institute of
Technology, China hanshuai@hit.edu.cn

Newsletter Editors

Name Affiliation Email

Qiang Ye
(Editor in Chief)

Dalhousie University,
Canada qye@cs.dal.ca

Moez Esseghir
(Technical Editor)

University of Technology of
Troyes, France moez.esseghir@utt.fr

Lu Lv
(Technical Editor) Xidian University, China lulv@xidian.edu.cn

IOT-AHSN TC Newsletter, Vol. 1, No. 15, December 2021 2

Correlation Aware Scheduling for Mobile Edge
Computing in Industrial Internet of Things

Tongxin Zhu⇤, Zhipeng Cai†, Xiaolin Fang⇤, Junzhou Luo⇤ and Ming Yang⇤
Southeast University⇤, Georgia State University†

{zhutongxin,xiaolin,jluo,yangming2002}@seu.edu.cn
, zcai@gsu.edu

Abstract—Mobile edge computing is a promising technology

to support the computation-intensive and latency-sensitive ap-

plications in Industrial Internet of Things networks. One major

problem for Mobile Edge Computing in Industrial Internet of

Things (MEC-IIoT) networks is to schedule limited computation

and communication resources with the purpose of improving

computation efficiency. One feature of IIoT networks is that

all IIoT devices monitor the same industrial site collabora-

tively. Therefore, the computation tasks originated from IIoT

devices are correlated accordingly. To reduce the computation

redundancy and further improve the computation efficiency in

MEC-IIoT networks, a correlation aware scheduling algorithm

is proposed in this paper, whose performance is verified by

theoretical analysis and simulation results.

Index Terms—Industrial Internet of Things, Mobile Edge

Computing, correlation aware scheduling.

I. INTRODUCTION

Industrial Internet of Things (IIoT) is widely applied in
intelligent manufacturing, where IIoT devices in an industrial
site are connected with each other through internet to monitor
the industrial site collaboratively [1]. With the rapid devel-
opment of IIoT, more and more computation-intensive and
latency-sensitive tasks are required by IIoT devices. However,
the computation, communication and storage capacities of IIoT
devices are limited. To alleviate the conflict between limited
capacity of IIoT devices and high requirements of computation
tasks, Mobile Edge Computing (MEC) technique is employed
in IIoT networks. With the help of edge devices located at
the edge of IIoT networks, computation tasks originated from
IIoT devices can be offloaded to near edge devices.

One major problem in MEC-IIoT networks is the scheduling
for processing computation tasks. Plenty of works have been
devoted to investigating the computation scheduling problem
for MEC-IIoT networks [2]–[4]. However, these works ig-
nored the correlations among computation tasks originated
from IIoT devices in the same industrial site. It is well
known that all IIoT devices in an industrial site sense the
same industrial environment and their sensory data are highly
correlated accordingly. Therefore, the computation of these
sensory data are correlated as well, i.e., computation tasks in
an industrial site are correlated. For example, in the industrial
scenario where workers wearing Virtual Reality (VR) devices
participating in industrial activities [5]. The main computation
task of VR devices is the viewpoint rending. Workers in

Identify applicable funding agency here. If none, delete this.

similar places may share a similar virtual environment, and
the VR content of these VR devices may be highly correlated.
Therefore, the computation tasks of VR devices in similar
places are highly correlated. It inspires us to schedule highly
correlated computation tasks to the same IIoT device or edge
device. Therefore, correlation aware computation scheduling is
necessary for reducing computation redundancy and improving
computation efficiency in MEC-IIoT networks.

There are some challenges for correlation aware computa-
tion scheduling in MEC-IIoT networks. The first challenge is
that whether a computation task being computed locally by
its IIoT device or offloaded to an edge device is no longer in-
dependent. The computation offloading for computation tasks
are related to their correlations. The second challenge is that
different processing orders of computation tasks in an IIoT
device or an edge device have different performances. It is
necessary to make processing order decision for each device
elaborately based on the correlations among their computation
tasks. We solve the above challenges by proposing a correla-
tion aware scheduling algorithm to approximately minimize
computation latency in MEC-IIoT networks.

II. PROBLEM DEFINITION

We consider a MEC-IIoT network as shown in Fig.1(a).
The set of edge devices is E = {E1, · · · , EM} and the set of
IIoT devices is I = {I1, · · · , IN}. The set of tasks is T =
{T1, · · · , TK} and the set of tasks originated from IIoT device
Ii is Ti ⇢ T , where T =

SN
i=1 Ti. Each task is represented by

Tk = (Ck, Dk), where Dk is the data size and Ck is the CPU
cycles required by Tk. The definition of correlation coefficient
of two tasks Tk and Tl is as follows.

Definition 1 (Correlation Coefficient): The correlation coef-
ficient of two tasks Tk, Tl 2 T is "k,l, indicating that if tasks
Tk and Tl are successively computed in a single device, the
number of CPU cycles required by the device computing them
successively is (Ck + Cl)⇥ (1� "k,l).

Based on definition 1, we have that (Ck+Cl)⇥(1�"k,l) >
Ck and (Ck + Cl) ⇥ (1 � "k,l) > Cl. The reason is that the
number of CPU cycles required by a device computing Tk and
Tl must no less than the number of CPU cycles required by the
device computing either Tk or Tl. Therefore, the correlation
coefficient satisfies that 0  "k,l <

1
2 .

Each IIoT device can either compute one task locally
or offload it to a selected edge device, i.e., choose local

IOT-AHSN TC Newsletter, Vol. 1, No. 15, December 2021 3

computation model or edge computation model. Indicators xk,j

(j = 0, 1, · · · ,M) are used to indicate the schedule of task Tk,
where xk,0 = 0 indicates Tk being computed by its original
IIoT device and xk,j (j = 1, · · · ,M) indicates Tk being
offloaded to edge device Ej . We have that

PM
j=0 xk,j = 1.

Local Computation Model: The processing order of tasks
computed at IIoT device Ii is denoted as a sorted set ~Ni,
where ni = | ~Ni|. Then, the CPU cycles required by Ii for
processing the first n tasks in ~Ni is

ZI
i,n =

⇢
Ck, n = 1,

ZI
i,n�1 + Ck � "k,l(Ck + Cl), 2  n  ni.

(1)

Therefore, the latency for Ii processing all tasks in ~Ni is
tIi,ni

= ZI
i,ni

/f I
i , where f I

i is the CPU frequency of Ii. The
maximum computation latency for all IIoT devices processing
tasks locally is tIsum = max{tIi,ni

|8Ii 2 I}.
Edge Computation Model: The processing order of tasks

computed at edge device Ej is denoted as a sorted set ~Mj ,
where mj = | ~Mj |. Then, the CPU cycles required by Ej for
processing the first n tasks in ~Mj is

ZE
j,n =

⇢
Ck, n = 1,

ZE
j,n�1 + Ck � "k,l(Ck + Cl), 2  n  mj .

(2)
Therefore, the latency for Ej computing all tasks in ~Mj is
tEj,mj

= ZE
j,mj

/fE
j , where fE

j is the CPU frequency of Ej .
Besides, the total latency for offloading all Tk originated from
Ii 2 I to Ej is tCj =

PN
i=1

P
Tk2Ti

xk,jDk

ri,j
, where ri,j is the

uplink communication rate between Ii and Ej . The maximum
latency for all edge devices receiving and computing offloaded
tasks is tEsum = max{tCj + tEj,mj

|8Ej 2 E}.
In summary, the latency for a MEC-IIoT network processing

all tasks is tsum = max{tEsum, t
I
sum}. And the Correlation

Aware Latency Minimization Scheduling (CALMS) problem
in MEC-IIoT networks is

LMS : min
x, ~N , ~M

tsum (3)

s.t.
MX

j=0

xk,j = 1, Tk 2 T ,

X

Tk2T
xk,j = | ~Mj |, Ej 2 M,

X

Tk2Ti

xk,0 = | ~Ni|, Ii 2 I,

xk,j = {0, 1}, Tk 2 T , 0  j  M,

where x = {xk,j |Tk 2 T , 0  j  M}, ~N = { ~Ni|Ii 2 I},
and ~M = { ~Mj |Ej 2 E}.

Theorem 1: The Correlation Aware Latency Minimization
Scheduling problem in MEC-IIoT networks is NP-hard.

III. SKELETON OF THE CAS ALGORITHM

We proposed an approximation algorithm for the Correlation
Aware Latency Minimization Scheduling problem in MEC-
IIoT networks, named as the Correlation Aware Scheduling
(CAS) algorithm. The CAS algorithm consists of two parts,

(a) The network infrastructure (b) The correlation coefficients

Fig. 1. The illustration of a MEC-IIoT network.

i.e., Computation Model Decision and Processing Order De-
cision.

Computation Model Decision: We first make the computa-
tion model decision x for all tasks without considering their
correlations. In this case, the problem can be modified to a
classic makespan minimization scheduling problem for unre-
lated parallel machines. According to this modification and
an existing algorithm for the classic makespan minimization
scheduling problem [6] [7], we propose the computation model
decision policy with approximation ratio of 2.

Processing Order Decision: We make the processing order
decision ~N and ~M for tasks in all IIoT devices and edge
devices according to correlations among tasks. A task queue
for a device is maintained in a greedy strategy as follows. The
task queue is initialized as two tasks with the maximum corre-
lation coefficient. Then, the task having maximum correlation
coefficient with the head or tail of the task queue is added to
the head or tail ot the task queue. In this way, the computation
redundancy is reduced as far as possible.

Theorem 2: The approximation ratio of the CAS algorithm
is 2

(1�2"max)
, where "max = max{"k,l|Tk, Tl 2 T }.

Theorem 2 is proved to verify the performance of the CAS
algorithm. And simulation results show that the proposed
CAS algorithm can significantly reduce latency of MEC-IIoT
networks by considering correlations among tasks.

REFERENCES

[1] G. S. S. Chalapathi, V. Chamola, A. Vaish, and R. Buyya, “Industrial
internet of things (iiot) applications of edge and fog computing: A review
and future directions,” CoRR, vol. abs/1912.00595, 2019.

[2] M. Li, C. Chen, H. Wu, X. Guan, and X. Shen, “Age-of-information
aware scheduling for edge-assisted industrial wireless networks,” IEEE

Trans. Ind. Informatics, vol. 17, no. 8, pp. 5562–5571, 2021.
[3] H. Guo and J. Liu, “Uav-enhanced intelligent offloading for internet of

things at the edge,” IEEE Trans. Ind. Informatics, vol. 16, no. 4, pp.
2737–2746, 2020.

[4] Z. Zhao, R. Zhao, J. Xia, X. Lei, D. Li, C. Yuen, and L. Fan, “A
novel framework of three-hierarchical offloading optimization for MEC
in industrial iot networks,” IEEE Trans. Ind. Informatics, vol. 16, no. 8,
pp. 5424–5434, 2020.

[5] P. Lin, Q. Song, D. Wang, F. R. Yu, L. Guo, and V. C. M. Leung, “Re-
source management for pervasive-edge-computing-assisted wireless VR
streaming in industrial internet of things,” IEEE Trans. Ind. Informatics,
vol. 17, no. 11, pp. 7607–7617, 2021.

[6] V. V. Vazirani, Approximation algorithms. Springer, 2001.
[7] J. K. Lenstra, D. B. Shmoys, and É. Tardos, “Approximation algorithms

for scheduling unrelated parallel machines,” in 28th Annual Symposium

on Foundations of Computer Science, Los Angeles, California, USA, 27-

29 October 1987. IEEE Computer Society, 1987, pp. 217–224.

IOT-AHSN TC Newsletter, Vol. 1, No. 15, December 2021 4

Deep Reinforcement Learning Assisted Energy
Efficient Computation Offloading with DVFS for

Time-Critical IoT Applications in Edge Computing
Saroj Kumar Panda

Department of Computer Science
St. Francis Xavier University

Canada
x2019fpn@stfx.ca

Man Lin
Department of Computer Science

St. Francis Xavier University
Canada

mlin@stfx.ca

Abstract—As more and more battery-powered IoT devices are
deployed in the field to support the growing number of IoT ap-
plications requiring real-time response, reducing the energy con-
sumption of these IoT devices while meeting the computational
goals have become the most important challenge. In this article,
we propose a deep reinforcement learning and Dynamic Voltage
and Frequency Scaling (DVFS) based application-deadline-aware
data offloading scheme in an edge computing environment to
reduce the energy consumption of IoT devices. This scheme
learns the DVFS frequency scaling for local computation and the
optimal data distribution policies by interacting with the system
environment and learning the device, network, and edge server’s
behaviours. Experimental results using various devices show that
the proposed scheme can achieve the IoT application’s timing and
computational goals while minimizing energy consumption. The
proposed scheme also achieves substantial energy gain compared
to the native Linux governors.

Index Terms—IoT, Edge Computing (EC), DVFS, Deep Rein-
forcement Learning (DRL).

I. INTRODUCTION

Edge Computing (EC) in IoT applications perform the
computation close to the data source by placing high com-
puting power edge servers near the IoT devices. IoT devices
manufactured in recent years have computational power and
memory, allowing EC to perform IoT application computation
directly on the IoT device. However, compared with edge
servers, IoT devices have limited computation capability and
battery-power, making it infeasible to achieve delay-sensitive
IoT applications’ computational goals by computing only on
the IoT device. Computation Offloading is one of the best
solutions to this problem, which can transfer some of the
computation tasks and data to nearby edge servers.

The core challenge of computation offloading is to jointly
optimize energy consumption, computation, communication,
and make a controlled computation offloading decision in a
dynamic EC environment. Various dynamically changing fac-
tors can affect the offloading decision, such as communication
medium, and edge server utilization states. If the offloading
decision does not consider these dynamic variations, it will
perform poorly.

Deep reinforcement learning (DRL) is a promising solution
for optimization problems [1]–[3] including computation of-
floading in dynamic environments. IoT device learns the best
offloading policy by interacting with the environment in a trial-
and-error manner. Dynamic Voltage and Frequency Scaling
is another promising solution to optimize processor energy
consumption where the processor frequency and voltage are
adjusted to lower levels to reduce energy consumption.

In recent years, Deep Learning (DL) based IoT applications
have become popular. Training the DL models requires high
computational power and can be trained offline on cloud
or edge servers using high computational resources, whereas
performing inference on the trained model requires signifi-
cantly less computational power and can be performed on
IoT devices. These DL models are highly data-parallel, i.e.
multiple instances of the same DL model deployed on multiple
edge devices can perform inference on different data sets
in parallel. We take advantage of this data parallelism and
propose a deep reinforcement learning (DRL) based simpler
computation offload approach that learns to jointly optimize
energy consumption by selecting optimal DVFS frequency
for the local computation, and the data offload distribution
to offload part of the data from the IoT device to the edge
servers while considering the dynamically varying factors
of communication network state and edge servers resource
utilization state. Both the IoT device and the edge server
execute the same computation task on separate data sets.

II. PROPOSED DRL OFFLOADING SCHEME AND
EXPERIMENT RESULTS

The System Architecture of the proposed DRL Offloading
Scheme is schematically illustrated in Fig. 1. IoT device
energy consumption varies for different application deadlines.
The edge server computation results availability and energy
consumption varies based on the communication medium and
the edge server’s computational resources availability states.
We capture the impact of both by computing the edge server
response time per data. We use a combination of the response
time and the application deadline as the environment state.

IOT-AHSN TC Newsletter, Vol. 1, No. 15, December 2021 5

Neural Network Actions

local freq 1, ratio 1

local freq 2, ratio 2

local freq 3, ratio 3

local freq n, ratio n

IoT Device
DVFS freq
Controller

Computation
Data

Edge Server

Computation

Data Offload

Result

deadline 1, resp 1

deadline 2, resp 2

deadline 3, resp 3

deadline m, resp m

Possible
Environment States

Q(s,a)

Calculate Resp Time

Energy as Reward

Take

Action

Determine
State

Comm-Link

State

Fig. 1. System Architecture of DRL Offloading Scheme

We use the local computation CPU frequency, and the data
offload distribution among IoT device and edge servers as the
actions.For simplicity of implementation, we use the same set
of actions for all the states.

We use energy consumption as the reward if the action
is completed within the application deadline and a penalty
of a high number if the action misses the deadline. The
reinforcement learning agent initially sends some data to the
edge server to determine the initial system state. After the
initial state is determined, it takes random action, observes the
reward or penalty, and determines the new state by observing
the response time for the action taken. It repeats the steps of
determining the state, taking action in that state, observing
the reward/penalty, and trains a neural network from the data
collected to estimate the action values Q(s,a) by feeding the
state as the input and reward/penalty as the expected action
values for the set of actions defined for that state.

A. Experiment Results

We used one IoT device and one edge server with MNIST
classification as the IoT application. We conducted experiment
using Raspberry Pi [4], Jetson Nano [5], and a Linux laptop
[6] as the IoT device. The trained DRL model was able to
predict the right action for the varying system states that
minimized the energy consumption when compared with rest
of the actions. The proposed scheme also saved 3 - 7% energy
against ondemand and 7 - 10% against conservative governor
when Jetson Nano [5] and Linux Laptop [6] were used as IoT

device. Raspberry Pi [4] had negligible energy savings as it
does not support voltage scaling.

III. CONCLUSION

This article proposes a DRL based offloading scheme that
learns the optimal data distribution and local computation
DVFS frequency scaling by interacting with the system en-
vironment and learning the device, the network, and edge
servers’ behavior. Experiment results from various IoT devices
show that this scheme always selects the best action that
achieves the application deadline while minimizing the energy
consumption. This scheme also saves energy in comparison to
the native DVFS scaling Linux governors.

REFERENCES

[1] H. Huang, Q. Ye, and H. Du, “Reinforcement learning based offloading
for realtime applications in mobile edge computing,” in ICC 2020 - 2020
IEEE International Conference on Communications (ICC), 2020, pp. 1–6.

[2] T. Zhou and M. Lin, “Deadline-aware deep-recurrent-q-network governor
for smart energy saving,” IEEE Transactions on Network Science and
Engineering, 2021.

[3] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang,
and D. I. Kim, “Applications of deep reinforcement learning in com-
munications and networking: A survey,” IEEE Communications Surveys
Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

[4] R. P. Foundation, “Raspberry pi 4 model b specifications,”
https://www.raspberrypi.org/products/raspberry-pi-4-model-
b/specifications/.

[5] N. Corporation, “Jetson nano 2gb developer kit,”
https://developer.nvidia.com/embedded/jetson-nano-2gb-developer-kit.

[6] Intel, “Intel® core™ i3-6006u processor specification,”
https://ark.intel.com/content/www/us/en/ark/products/91157/intel-core-
i3-6006u-processor-3m-cache-2-00-ghz.html.

IOT-AHSN TC Newsletter, Vol. 1, No. 15, December 2021 6

